The aim of this study was to select the best strains of

\r\nSaccharomyces cerevisiae able to resist lead and cadmium. Ten

\r\nstrains were screened on the basis of their resistance at different

\r\nconcentrations of 0, 2, 4, 8, 12, 16, 20 and 24 ppm for Pb and 0, 0.5,

\r\n1, 2, 4, 6, 8 and 10 ppm for Cd. The properties of baker's yeast

\r\nquality were decreased by the increase of Pb or Cd in growth

\r\nmedium. The slope values of yield, total viable cells and gassing

\r\npower of produced baker's yeast were investigated as an indicator of

\r\nmetal resistant. In addition, concentrations of Pb and Cd in produced

\r\nbaker's yeast were determined. The strain of S. cerevisiae FH-620

\r\nhad the highest resistance against Pb and Cd and had the minimum

\r\nlevels of both two investigated metals in produced baker's yeast.<\/p>\r\n","references":"[1] W. Damtew. Studies on the development of baker\u2019s yeast using cane\r\nmolasses. M.Sc. Thesis, Fac. Technol., Addis Ababa Univ., Addis\r\nAbaba, 2008, 189 p.\r\n[2] P. Iatskovskaia, G. I. Solomko, I. V. Kononko and V. K. Ianchevskii.\r\nChemical composition of protein concentrate from Saccharomyces and\r\nits effect on immunologic response. Vopr pitan., Jan-Feb., 1992 (1) pp.\r\n63-67.\r\n[3] L. V. Curtin. Molasses-General Considerations. In: Molasses in Animal\r\nNutrition (Ed. Curtin, L. V.), National Feed Ingredients Association,\r\nWest Des Moines, USA, 1983, pp. 211-235.\r\n[4] H. Togrul and N. Arslan. Mathematical model for prediction of apparent\r\nviscosity of molasses. Journal of Food Engineering, 2004, vol. 62 pp.\r\n281\u2013289.\r\n[5] G. N. Abdel-Rahman. Effect of some heavy metals in molasses medium\r\non the produced baker's yeast properties. M.Sc. Thesis, Food\r\nTechnology Dep. Fac. Agric., Cairo Univ., Egypt, 2010, 171 p.\r\n[6] I. S. Ross. Some effects of heavy metals on fungal cells. Trans. Br.\r\nMycol. Soc., 1975, vol. 64 pp. 175-193.\r\n[7] G. M. Gadd. Interactions of fungi with toxic metals. New Phytol., 1993,\r\nvol. 124 pp. 25-60.\r\n[8] E. V. Soares, K. Hebbelinck and H. M. V. M. Soares. Toxic effects\r\ncaused by heavy metals in the yeast Saccharomyces cerevisiae: a\r\ncomparative study. Can J. Microbiol., 2003, vol. 49 pp. 336-343.\r\n[9] P. Skountzou, M. Soupioni, A. Bekatorou, M. Kanellaki, A. A.\r\nKoutinas, R. Marchant and I. M. Banat. Lead (II) uptake during baker\u2019s\r\nyeast production by aerobic fermentation of molasses. Process\r\nBiochemistry, 2003, vol. 38 pp. 1479-1482.\r\n[10] V. Brandolini, P. Tedeschi, A. Capece, A. Maietti, D. Mazzotta, G.\r\nSalzano, A. Paparella and P. Romano. Saccharomyces cerevisiae wine\r\nstrains differing in copper resistance exhibit different capability to\r\nreduce copper content in wine. World Journal of Microbiology &\r\nBiotechnology, 2002, vol. 18 pp. 499\u2013503.\r\n[11] C. Li, Y. Xu, W. Jiang, X. Dong, D. Wang and B. Liu. Effect of NaCl on\r\nthe heavy metal tolerance and bioaccumulation of Zygosaccharomyces\r\nrouxii and Saccharomyces cerevisiae. Bioresource Technology, 2013,\r\nvol. 143 pp. 46\u201352.\r\n[12] Egyptian Standard. Egyptian Standard of yeast Part 2: methods of\r\nanalysis and testing for yeast. Egyptian Organization for Standardization\r\nand Quality Control, E.S. 191\/2000.\r\n[13] M. L. Suihko and V. Mfikinen. Candida krusei in baker's yeast\r\nproduction. European J Appl Microbiol Biotechnol., 1981, vol. 13 pp.\r\n113-116.\r\n[14] SAS: Statistical Analysis System, SAS \/ STAT User's Guide. Release\r\n6.03 Edn. SAS Institute, Cary, NC, 1028 PP., 1999.\r\n[15] P. D. B. Adamis, D. S. Gomes, M. L. C. C. Pinto, A. D. Panek and E. C.\r\nA. Eleutherio. The role of glutathione transferases in cadmium stress.\r\nToxicology Letters, 2004, vol. 154 pp. 81\u201388.\r\n[16] M. Mapolelo, N. Torto and B. Prior. Evaluation of yeast strains as\r\npossible agents for trace enrichment of metal ions in aquatic\r\nenvironments. Talanta, 2005, vol. 65 pp. 930\u2013937.\r\n[17] D. S. Gomes, L. C. Fragoso, C. J. Riger, A. D. Panek and E. C. A.\r\nEleutherio. Regulation of cadmium uptake by Saccharomyces\r\ncerevisiae. Biochimica et Biophysica Acta, 2002, vol. 1573 pp. 21- 25.\r\n[18] M. Schmitt, G. Gellert, J. Ludwig and H. L. Frate. Phenotypic yeast\r\ngrowth analysis for chronic toxicity testing. Ecotoxicology and\r\nEnvironmental Safety, 2004, vol. 59 pp. 142\u2013150.\r\n[19] S. Vinopal, T. Ruml and P. Kotrba. Biosorption of Cd2+ and Zn2+ by cell\r\nsurface-engineered Saccharomyces cerevisiae. International\r\nBiodeterioration and Biodegradation, 2007, vol. 60 pp. 96-102.\r\n[20] F. Ghorbani, H. Younesi, S. M. Ghasempouri, A. A. Zinatizadeh, M.\r\nAmini and A. Daneshi. Application of response surface methodology for\r\noptimization of cadmium biosorption in an aqueous solution by\r\nSaccharomyces cerevisiae. Chem. Eng. J., 2008, vol. 145 pp. 267-275.\r\n[21] F. Di Caprio, P. Altimari, D. Uccelletti and F. Pagnanelli. Mechanistic\r\nmodelling of copper biosorption by wild type and engineered\r\nSaccharomyces cerevisiae biomasses. Chemical Engineering Journal,\r\n2014, vol. 244 pp. 561-568.\r\n[22] W. Jiang, Y. Xu, C. Li, X. Lv and D. Wang. Effect of inorganic salts on\r\nthe growth and Cd2+ bioaccumulation of Zygosaccharomyces rouxii\r\ncultured under Cd2+ stress. Bioresour. Technol., 2013, vol. 128 pp. 831-\r\n834.\r\n[23] I. Lefevre, G. Marchal, P. Meerts, E. Correal and S. Lutts. Chloride\r\nsalinity reduces cadmium accumulation by the Mediterranean halophyte\r\nspecies Atriplex halimus L. Environ. Exp. Bot, 2009, vol. 65 pp. 142-\r\n152.\r\n[24] S. A. H. Munoz, K. Wrobel, G. J. F. Corona and K. Wrobel. The\r\nprotective effect of selenium inorganic forms against cadmium and\r\nsilver toxicity in mycelia of Pleurotus ostreatus. Mycol. Res., 2007, vol.\r\n111 pp. 626-632.\r\n[25] M. Strouhal, R. Kizek, J. Vacek, L. Trnkova and M. Nemec.\r\nElectrochemical study of heavy metals and metallothionein in yeast\r\nYarrowia lipolytica. Bioelectrochemistry, 2003, vol. 60 pp. 29-36.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 97, 2015"}